0%

search for topic: Awesome xxx

无意在网上看到了编程语言的鄙视链,我anyscript(ts)位列末端,Rust以其编码效率和执行效率、面向现代化,没有历史包袱的优点成为鄙视链上高于C/C++的存在

无间

刘邦被围

安史之乱潼关失守

设置RichText以使文本中的样式生效

1
2
3
4
5
6
Label {
textFormat: Text.RichText;
text: "<style>a:link { color: " + Theme.highlightColor + "; }</style>" +
"<a href=https://together.jolla.com/'>Jolla2Gether</a>";
}
}

AP(Access Point)

通常说的是无线AP,即无线网络接入点,无线路由器的天线就是AP,其作用是收发网络数据信号,在网络中相当于交换机,家装中做全屋网络覆盖会安装AP设备 (因为常常是商用,其功能不如路由器售价却比路由器贵很多)

AC(Access Controller)

接入控制器,集中化控制局域网内可控的无线AP, 应用场景如商场的不同区域AP,统一连接到AC,使得顾客从一个区域到另一个区域,始终连接统一网络

安装TensorFlow Object Detection API

参考PaddleX准备anaconda和cuda

参考安装Tensorflow2

1
2
3
conda create -n tensorflow python=3.10
conda activate tensorflow
pip install tensorflow

pip自动安装最新release版本 2.0之后不再区分cpu和gpu版本

测试安装,在python中引用tensorflow, 对一个随机张量的求和

1
2
python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))"
# 结果形如tf.Tensor(-1082.7711, shape=(), dtype=float32)

install the TensorFlow Object Detection API:
下载模型库 新建一个Tensorflow目录并将模型库clone/解压到目录下
TensorFlow/
└─ models/
├─ community/
├─ official/
├─ orbit/
├─ research/
└── …
根据Readme的提示安装official library
1
2
3
4
# 将model路径添加到PYTHONPATH环境变量
set PYTHONPATH=%PYTHONPATH%;C:\Users\qqqst\Documents\TensorFlow\models
# 安装requirements
pip3 install --user -r models/official/requirements.txt


下载protobuf添加到环境变量path,对于windows下载 protoc---win64.zip并解压,注意protobuf--.zip是source code 添加路径如D:\Software\protoc-25.1-win64\bin到path

使用protoc编译模型的python版本(与.proto一一对应的.py文件)

1
2
# cmdline in TensorFlow/models/research
for /f %i in ('dir /b object_detection\protos\*.proto') do protoc object_detection\protos\%i --python_out=.

install pycocotools (依赖vc++ 2015)

1
2
pip install cython
pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI

看到Object Detection for TensorFlow 2.0的setup script

Install the Object Detection API

1
2
3
# From within TensorFlow/models/research/
cp object_detection\packages\tf2\setup.py .
python -m pip install .

调用test脚本以测试安装
1
2
# From within TensorFlow/models/research/
python object_detection/builders/model_builder_tf2_test.py

</del>

关于版本号和构建编号

The standard build numbering convention makes use of a fourth numerical indicator which is appended
to the release number, where the fourth indicator is the build number.

  • For verification builds, the build number starts with a “1”, and increments with each successive
    build. For each successive release, the build indicator starts again with zero’s.
  • For development builds, the build number starts with “20001” and increments with each
    successive build. For each successive release, the build indicator starts again with zero’s.

Examples:
4.3.0.20134 – The 134th development build of release 4.3.0
4.3.0.4 – The 4th verification build of release 4.3.0

Release image naming convention -> Example: GxPicture_3.4.3.7.ISO